2026/01/28 21:22 1/4 Using Docker Images

Using Docker Images with Singularity

HOW THIS TUTORIAL WORKS

This tutorial is written in order to give a small insight in using Docker image files with Singularity. It
will cover, connecting to cluster, pulling the image and starting a database for a small test script.

It is written as shell script itself and might just be executed on the cluster!
You may also just copy paste the commands for a better understanding.
Please check this tutorial if you are interested in creating an own image file.

Thx for reading
Jan Eberhardt

#! /bin/bash

0. Login on Frontend (you probably already did that)

Use your TUB account and host gateway.hpc.tu-berlin.de
ssh "<TUB account name>@gateway.hpc.tu-berlin.de"

1. Get Docker Image

Go to your home directory and download the image via singularity.
You must load the singularity module beforehand.

module load singularity/3.1.0

Pulling docker images is done by Singularity's pull command. Source will
be something like "docker://[package name]".

Singularity will automatically download the latest version of the image
and rewrite it to a Singularity image file (sif) as "[package

name] latest.sif".

Therefore you will need write permission in your current working directory
(which is why we changed into home).

cd

singularity pull "docker://mongo"

2. Create Python environment [if using Python]

Most Python projects will use open source libraries installed by pip.
Since normal users are not allowed to do so, it is recommended to install
pip packages in user space or in a virtual python environment. We would
discourage you from using user space for installation since most packages
you will only use once in your life and it is therefore cleaner to get an
unique environment for each project of yours.

a) Load python module.
module load python/3.7.1

b) Create the environment
py="~/mongodb venv"
python3 -m venv ${py}

HPC-Cluster-Dokumentation - https://hpc.tu-berlin.de/

https://hpc.tu-berlin.de/doku.php?id=hpc:tutorials:singularity:create_image_files

Last update:) I .) el S N . _
2024/04/19 13:45 hpc:tutorials:singularity:docker https://hpc.tu-berlin.de/doku.php?id=hpc:tutorials:singularity:docker&rev=1713527159

c) Install required pip packages and updates and create start script.
You may change the next steps accordingly to your project.

EXAMPLE PIP PACKAGE LIST
#>>SSSSSSSSSSSSSSOSSOSSOSOSOSSSOSSSSSSSSOSSSSSOSSSSSSSSSSSSSSSSSSSSSSSSSSSSS>>>
SS>S>5>5>>>>

cat << EOL > "${py}/pip-packages"

pymongo>=3.8.0

EOL
H<<<<<<LLL L LKL LKL LKL LKL
< <L L L L L L

EXAMPLE PYTHON SCRIPT
HF>SSSSSSSSSSSSSSSSSOSSSSSSSSSSOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOSSSSSSSSS>
SS>S>5>5>5>5>>

cat << EOS > ~/mongodb run.py

#! python3

from pymongo import MongoClient
from pprint import pprint

from sys import argv, executable
from datetime import datetime

print("Starting {:s}".format(argv[0]))
print("Using environment {:s}".format(executable))
print("Connecting to localhost")

db name = "test database"
col name = "test collection”

client = MongoClient("localhost", 27017)

print("Open collection '{:s}' on database '{:s}'".format(col name, db name))
db = client[db name]

col = db[col name]

post = {

"author": "HPC User",
"text": "This is a test record!",
“tags": ["test", "mongodb", "pymongo"],
"date": datetime.utcnow()

}

print("Inserting single record, resulting:")

post record = col.insert one(post)

pprint(post record);

EOS

<KL LLLL LKL LKL LKL L L L L LLLLLLLLLLLLLLLLLILLLLLLLLLLLLL L LL<L<L<<<<<<
<< <L L L <<

"${py}/bin/pip3" install --upgrade pip

https://hpc.tu-berlin.de/ Printed on 2026/01/28 21:22

2026/01/28 21:22 3/4 Using Docker Images

"${py}/bin/pip3" install -r "${py}/pip-packages"

3. Create DB directory
dd="~/mongo"
mkdir -p "${dd}"

4. Start Server and run

Use mongodb start.sbatch in order to allocate resources for and to start
mongodb server:

This script will open up a server on a node and close it after the Python
script finishes.

#

We use the --exclusive switch of SBATCH in order to secure that port 27017
(default mongodb) is not in use.

If you do not like to use an exclusive node you will have to either accept
the risk that the command fails or

to build a Singularity image of your own.
H>>>SSSSSSSSSSSSSSSSSSSSSSSSSSOSSOSSSSSSSOSSOSSSSSSSSSSSSSOSSSSSSSSSSSSSSSS>>
SSS>5>5>5>5>>

cat << EOF > ./mongodb start.sbatch

#!/bin/bash

#

Start MongoDB docker image

#

#SBATCH --job-name=MongoDBStart

#SBATCH --partition=standard

#SBATCH --nodes=1

#SBATCH --cpus-per-task=4

#SBATCH --exclusive

#

#1 prepare

module load singularity/3.1.0

#- start instance (not the server)

#- In that way we can use the instance command to stop the database when
script finishes.

singularity instance start --bind "${dd}:/data/db" ./mongo latest.sif
mongodb

#- start server (by runscript)

#- It will generate a lot of output, better redirecting that to oblivion
(1>/dev/null).

#- Also this call will lock your shell, avoided by ending the command with
"&".

singularity run instance://mongodb 1>/dev/null &

#2 run program

#- wait for database server to run
sleep 5

#- run script

${py}/bin/python3 ~/mongodb run.py

HPC-Cluster-Dokumentation - https://hpc.tu-berlin.de/

Last update:) I .) . N N . _
2024/04/19 13:45 hpc:tutorials:singularity:docker https://hpc.tu-berlin.de/doku.php?id=hpc:tutorials:singularity:docker&rev=1713527159

#3 stop database after script finishes

singularity instance stop mongodb
EOF

<< LLLLILILLLLIL LKL LKL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L L <L <L<<<<<<
<L<LIL L L L LKL

sbatch ./mongodb start.sbatch

From:
https://hpc.tu-berlin.de/ - HPC-Cluster-Dokumentation

Permanent link:

Last update: 2024/04/19 13:45

https://hpc.tu-berlin.de/ Printed on 2026/01/28 21:22

https://hpc.tu-berlin.de/
https://hpc.tu-berlin.de/doku.php?id=hpc:tutorials:singularity:docker&rev=1713527159

	[Using Docker Images with Singularity]
	[Using Docker Images with Singularity]
	Using Docker Images with Singularity
	HOW THIS TUTORIAL WORKS

